Running Jupyter notebooks online
Jupyter notebooks are useful for sharing insights about data. If the notebook is just on your own device, how are you supposed to share it? Sending an ipynb file to someone else is not a great experience. Ideally, you could send a link, and the recipient doesn’t have to worry about installing Jupyter or Python environments or anything like that.
A difficult way to do this is to run JupyterHub and expose it to the internet. It’s a lot of effort, but valid in some situations. If only you need to access it, running Jupyter in server mode is slightly easier. Both of these options require you to run a server such as a machine on a cloud service like AWS.
Managed, or hosted, notebooks are a much more reliable way to do this. Managed notebooks handle running Jupyter for you, and let you share notebooks with just a link. Setting them up takes minutes instead of hours.
Below is a list of fully managed Jupyter-compatible notebook tools.
Amazon Sagemaker
Amazon SageMaker helps data scientists and developers to prepare, build, train, and deploy high-quality machine learning (ML) models quickly by bringing together a broad set of capabilities purpose-built for ML.
Google Colab
Colab notebooks allow you to combine executable code and rich text in a single document, along with images, HTML, LaTeX and more.
Deepnote
Deepnote is a new kind of data notebook that’s built for collaboration — Jupyter compatible, works magically in the cloud, and sharing is as easy as sending a link.
Hex
The Data Workspace for Teams. Work with data in collaborative SQL and Python notebooks. Share as interactive data apps that anyone can use.
Databricks Notebooks
Collaborate across engineering, data science, and machine learning teams with support for multiple languages, built-in data visualizations, automatic versioning, and operationalization with jobs.
DataCamp Workspace
DataCamp Workspace is an AI-powered data notebook to help you get from data to insights, faster.
Jetbrains Datalore
A powerful online environment for Jupyter notebooks. Use smart coding assistance for Python in online Jupyter notebooks, run code on powerful CPUs and GPUs, collaborate in real-time, and easily share the results.
Kaggle
Explore and run machine learning code with Kaggle Notebooks, a cloud computational environment that enables reproducible and collaborative analysis.
Nextjournal
Runs anything you can put into a Docker container. Improve your workflow with polyglot notebooks, automatic versioning and real-time collaboration. Save time and money with on-demand provisioning, including GPU support.
Noteable
Noteable is a collaborative notebook platform that enables teams to use and visualize data, together.